Food consumption databases: use in supporting food regulation

Janis Baines
Section Manager (acting)
Modelling, Evaluation and Surveillance Section
International Symposium on Food Safety
12-13 January 2007

Overview
• Role in risk analysis for food regulation
• Food consumption data
• Use in dietary exposure assessments
• Approaches to dietary exposure assessments
• Challenges

Overview
1. Hazard identification (adverse effects)
2. Hazard characterisation (dose response relationship)
3. Exposure Assessment (population exposure)
4. Risk characterisation (comparison of exposure to reference health standards)

Risk Analysis
Risk Assessment
Risk Management
Risk Communication
Science based
Policy based
Interactive exchange of information and opinions concerning risks

Risk Assessment Process

What is a dietary exposure estimate?
A dietary exposure estimate is where food consumption data and food chemical data are combined to estimate dietary exposure to food chemical(s) or nutrients.

Dietary Exposure = \sum \text{Food consumption} \times \text{Food chemical concentration}

Summed for all foods
Can be adjusted for body weight

Chemical concentration data
• Maximum levels (e.g., Codex or FSANZ Code permissions)
• Reported use levels (from food labels or manufacturers)
• Monitored levels (raw food or commodities)
• Levels in foods as consumed (total diet study)
Food consumption data

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita data</td>
<td>One data point for whole population</td>
</tr>
<tr>
<td>Model diets</td>
<td>One data point for each group</td>
</tr>
<tr>
<td>Household diets</td>
<td>Data for each household</td>
</tr>
<tr>
<td>National nutrition survey</td>
<td>Individual data</td>
</tr>
</tbody>
</table>

Food balance sheet data

- Per capita food consumption for a country
 = Food produced + food imported
 - food exported - use for animals - waste
 number of people in country

Per capita data

- Set of theoretical diets, based on food balance data (eg WHO cluster diets for different regions of the world)

- Data mainly for raw or minimally processed commodities and therefore may not be useful for information on consumption of processed or packaged food

Model diets

- Use available data on food supply, known dietary patterns or dietary survey data to construct a model diet for:
 - different age/gender groups
 - different ethnic groups
 - different regions within country
 - different life stage groups (e.g. pregnant women)

Individual dietary records

Suitable at national level:

- ✔ 24 hour recall
- ✔ Written diary records (1-7 days)
- ? Weighed food records in diary (1-7 days)
- ✔ Food frequency questionnaire
- X Diet history
- X Duplicate diet records
Daily records (recall or diary)

What did you eat yesterday?

- First morning meal (breakfast)
 - Mid morning snack
- Mid day meal
 - Afternoon snack
 - Drinks
- Evening meal
 - Before bed snack
 - Midnight snack

Detailed food records

<table>
<thead>
<tr>
<th>1st question</th>
<th>2nd question</th>
<th>3rd question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal consumed?</td>
<td>Type of ingredients?</td>
<td>Amount food eaten?</td>
</tr>
<tr>
<td>Noodles with meat and vegetables</td>
<td>What sort of noodles?</td>
<td>How much rice noodles?</td>
</tr>
<tr>
<td>What kind of vegetables?</td>
<td>How much carrots?</td>
<td>How much corn?</td>
</tr>
<tr>
<td>What type of meat?</td>
<td>Fried or steamed?</td>
<td>Pork? Lean or fatty?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beef? Fried or steamed?</td>
</tr>
</tbody>
</table>

Quantifying amounts

Real life models of foods and utensils

3-D shapes of common containers

![Graphs showing quantification of food amounts](image_url)
Dietary exposure assessments

How do we choose data and method?

- Case by case - depends on:
 - purpose of assessment
 - nature of hazard (time period for development of adverse effects, sensitive populations)
 - data available (quantity, quality)
 - time and resources available
 - statistical capability
 - existence and type of reference health standards

Micro risk assessment – transmission pathways

- Water
- Crops
- Humans
- Zoonotic Transmission
- Foodborne Transmission
- Vertical Transmission
- Humans
- Birds
- Cattle

Micro risk assessment

- Food consumption data used to assess contribution from food borne transmission of microbiological hazard
- ‘Per serve’ data more important than average daily amount

Types of Dietary Exposure Estimates

- Chronic Exposure: expected daily exposure to a food chemical over a lifetime or long period of time
 - use range of food consumption amounts or mean food consumption
 - can be for all people in survey (all respondents)
 - or for ‘eaters only’ of food containing the chemical (consumers only)
Types of Dietary Exposure Estimates

- **Acute Exposure**: expected exposure to a food chemical from short-term exposure (e.g. usually from one meal or over one day)
 - use high percentile food consumption amount (97.5th percentile)
 - ‘eaters only’ of food containing the chemical (consumers only)

Dietary exposure assessments of food chemicals

- Screening method
 - Aim to overestimate exposure, especially for high consumers or brand loyal customers
- Point estimate
- Probabilistic method

Point estimate or deterministic approach

EQUATION:

\[
\text{Dietary Exposure} = \sum \text{Single data point consumption amount} \times \text{Single data point chemical concentration}
\]

Adjusted for body weight using mean population body weight

Deterministic Approach (cont.)

<table>
<thead>
<tr>
<th>Food</th>
<th>Mean consumption (g/day)</th>
<th>Mean concentration (mg/kg)</th>
<th>Estimated exposure (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>15.6</td>
<td>3.7</td>
<td>0.058</td>
</tr>
<tr>
<td>Oat porridge</td>
<td>7.1</td>
<td>4.3</td>
<td>0.031</td>
</tr>
<tr>
<td>Milk</td>
<td>602.6</td>
<td>2.9</td>
<td>1.748</td>
</tr>
<tr>
<td>Beef</td>
<td>72.7</td>
<td>55</td>
<td>3.999</td>
</tr>
<tr>
<td>Tomato</td>
<td>54.8</td>
<td>0.94</td>
<td>0.052</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5.888</td>
</tr>
</tbody>
</table>

or \(0.088 \text{ mg/kg bw/day} = 5.888 \text{ (exposure in mg/day)} / 67 \text{ (mean body weight in kg)}\)

Probabilistic Approach

EQUATION:

\[
\text{Dietary Exposure} = \sum \text{Random food consumption amount from a distribution} \times \text{Random individual chemical concentration from a distribution}
\]

(Preferable to adjust consumption amount on a body weight basis prior to estimating exposure)

Calculation repeated thousands of times to give a range of estimated dietary exposures.
Probabilistic Approach

Residues of chemical Y

<table>
<thead>
<tr>
<th>Residue mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Probabilistic Approach (cont.)

A distribution of exposures is obtained.

- Mean and other percentile dietary exposures can be derived from the exposure distribution.

Roles for food consumption data and dietary exposure assessments in food regulation

- Risk assessment
- Development of risk management options
- Monitoring and surveillance (e.g. Total Diet Studies, ad hoc surveys such as dioxins in seafood)
- Development of labelling standards
- Development of advisory or educational material (e.g. mercury in fish advisory)
- Input to international food standards system (Codex, JECFA, JMPR, GEMS/Food at WHO)

Probabilistic Approach (cont.)

Estimate of dietary exposure for a single food using probabilistic modelling.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Random consumption kg/day</th>
<th>Individual body weight (kg)</th>
<th>Random concentration mg/kg</th>
<th>Exposure mg/kg bw/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.125</td>
<td>57</td>
<td>0.10</td>
<td>0.0002</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>63</td>
<td>0.20</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.273</td>
<td>98</td>
<td>0.45</td>
<td>0.0017</td>
</tr>
<tr>
<td>n</td>
<td>0.187</td>
<td>72</td>
<td>0.13</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Range of estimated exposures = 0 to 0.0017 mg/kg bw/day
Mean and percentiles can be derived from the exposure distribution.

Challenges

- Limited data sets
- How to make best use of data available
- Age of food balance sheet or national nutrition survey data (changes in food supply and food habits over time)
- Adjustment of 24 hour data to account for long term or ‘usual’ food consumption patterns
- Applying methods for food chemicals to nutrient risk assessments (deficiency and excess)
- Using data in microbiological risk assessments