Analysis of Organic Acids

Definition of Organic Acids

- **No definitions from Codex**
- **Broadly speaking, all organic compounds** having at least one carboxylic acid functional group

Important OAs in Food

Other OA can be found in Foods

Relevancy of OAs in NL

energy (kcal in 100g) = carbohydrate	x 4 +
protein	x 4 +
total fat	x 9 +
ethanol	x 7 +
organic acid	x 3

 May contribute in energy calculation
 Not a core nutrient but voluntary labeled value must be correct

Analytical Methods

- **Q:** Can I determine the "organic acids" content by titration?
- A: Not recommended since titration might:

 (1) over-estimate due to common additives such as benzoic acid, sorbic acid, sulphur dioxide, erythoric acid, etc. and
 (2) no suitable conversion factor for calculation

LC methods are preferred

culation

食物安全中心 Centre for Food Safety

Analytical Methods

Official method	Titles
AOAC 986.13	Quinic, Malic, and Citric Acids in Cranberry Juice Cocktail and Apple
GB/T 5009.157-2003	食品中有机酸的測定 Determination of Organic Acid in Fo

... and any other suitable methods for the food matrix concerned.

oods

FRL Method Workflow

Equipment

homogenizer

nitrogen evaporator

centrifuge

5 食物安全中心 Centre for Food Safety

Protocol for Liquid Samples

Protocol for Solid Samples

HPLC Conditions

Instrument:	HPLC-DAD/PDA
Column:	two C18 (15cm, 25cm) + one Dionex
Guard column:	C18 (7mm)
Mobile phase:	MeSO ₃ H & NaSO ₄ buffer (pH 2.8)
Temp:	25 °C
Flow:	0.5 mL/min
Injection vol:	20 μL
UV (λ):	220 nm
Runtime:	40 min + 10 min post-run

Chromatogram

- All 13 OAs separated
- **Frequent interferences :**

ascorbic acid and some anions

Calculation of Available Carbohydrate when OAs is of concern

Carbohydrate = 100 g - (water + ash + DF)(available) + protein + fat + ethanol + organic acid)

- How would energy content be affected? 0:
- (1) Due to different conversion factors for **A**: carbohydrates & OA (i.e. 4 vs 3)
 - (2) The extent depends on cases

Example 1 – Thousand Island Sauce

5 食物安全中心 Centre for Food Safety

Example 1 – Thousand Island Sauce

Nutrient (g/100 ml)	original	revis
Protein	1.1	1.1
Fat	45.5	45.:
Carbohydrate	12.3	11.
Organic acid	Not determined	1.0
Ethanol	0.0	0.0
Energy (kcal/100ml)	463	462

Example 2 – Grapefruit Juice

らう 全物安全中心 Centre for Food Safety

Example 2 – Grapefruit Juice

Nutrient (g/100 ml)	original	revise
Protein	0.0	0.0
Fat	0.0	0.0
Carbohydrate	13.5	12.8
Organic acid	Not determined	0.7
Ethanol	0.0	0.0
Energy (kcal/100ml)	54	53.3

える 全物安全中心 Centre for Food Safety

Example 3 – Chinese Red Vinegar

Example 3 – Chinese Red Vinegar

Nutrient (g/100 ml)	original	revised
Protein	0.0	0.0
Fat	0.0	0.0
Carbohydrate	10.0	5.0
Organic acid	Not determined	5.0
Ethanol	0.0	0.0
Energy (kcal/100ml)	40	35

食物安全中心 Centre for Food Safety

Points to Note

- **HPLC method is preferred for OA** analysis
- **Carbohydrate content should be** recalculated after OA analysis
- **OA** analysis is only important for samples of low energy content or with high level of OA

THANK YOU

