The First Hong Kong Total Diet Study: Inorganic Arsenic

February 2012
Content

- The First Hong Kong Total Diet Study (the 1st HKTDS)
- Inorganic Arsenic
- Study Findings
- Recommendations
The 1st HKTDS

- **Period:** 2010 ~ 2014

- **Objectives:**
 - To estimate the dietary exposures of the HK population and population subgroups to a range of selected substances
 - including contaminants and nutrients
 - To assess any associated health risks
The 1st HKTDS (2)

- **Food consumption data source**
 - Population-Based Food Consumption Survey (FCS)
 - Select 150 TDS food items
 - based on food consumption pattern
- **Analysis of over 130 substances**
 - Pesticide residues, persistent organic pollutants (POPs), metallic contaminants, mycotoxins, macro nutrients, elements, etc.
The 1st HKTDS (3)

- **Methodology:**
 - **Food sampling and preparation**
 - Commission the Chinese University of Hong Kong to carry out
 - 4 occasions from March 2010 to February 2011
 - A total of 1800 samples were collected and combined into 600 composite samples

 - **Laboratory Analysis**
 - Mainly conduct by the Food Research Laboratory (FRL) of the CFS
 - Perform in batches with reference to the nature and stability of the selected substances
The 1st HKTDS (4)

- Reports will be issued in phases
- **First report** (released in December 2011)
 - Dioxins and dioxin-like PCBs
- **Second report**
 - **Inorganic arsenic**
Inorganic Arsenic

- Arsenic: a metalloid occurs in inorganic and organic forms
- Inorganic arsenic: more toxic form of arsenic
 - Arsenic trioxide (As_2O_3)
Sources of inorganic arsenic

- Found in the environment
 - Natural sources
 - Arsenic is present in soil, ground water and plants
 - Human activities
 - Arsenic compounds are used in manufacture of transistors, lasers, semiconductors, glass, pigments, etc, and to a lesser extent, as pesticides, feed additives and pharmaceuticals.

- Major routes of exposure
 - Food such as rice, seafood
 - Drinking water
Health effect of inorganic arsenic

- **Acute toxicity to human**
 - Gastrointestinal symptoms, disturbances of cardiovascular and nervous system functions and may eventually death

- **Chronic effect to human**
 - Skin lesions, cardiovascular disease, neurotoxicity and diabetes

- **Carcinogenicity**
 - Cancers of urinary bladder, lung and skin in human
 - International Agency for Research on Cancer (IARC)
 - classified inorganic arsenic as Group 1 agent, i.e. carcinogenic to human
BMDL\textsubscript{0.5}

- Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) (2010)
 - Determined the inorganic arsenic BMDL\textsubscript{0.5} in human:
 - 3.0 μg/kg bw/day (ranged 2 – 7 μg/kg bw/day)
 - Withdrew the provisional tolerable weekly intake (PTWI) of 15 μg/kg bw/week (i.e. 2.1 μg/kg bw/day)
 - as it was no longer appropriate

BMDL\textsubscript{0.5} (Benchmark dose lower confidence limit for a 0.5% increased incidence of lung cancer in human)

- Lower confidence limit of a point on the dose-response curve that characterises adverse effect, to account for uncertainty in the data.
Margin of exposure

- Margin of exposure (MOE)
 \[
 \text{MOE} = \frac{\text{BMDL}_{0.5}}{\text{Dietary Exposure}}
 \]

- Provide an indication of the level of concern without actually quantifying the risk
- Use for priority setting for risk management actions
- Higher the MOE → Lower the concern
Laboratory analysis on inorganic arsenic

- **Exposure studies in other places:**
 - Usually analysis as **total arsenic**
 - Assign inorganic arsenic levels derived from conversion factors applied
 - → introduce biases in the estimates

- **JECFA (2010)**
 - recommend using actual data of inorganic arsenic
 - rather than calculate from total arsenic by using generalised conversion factors
Study Findings
Inorganic arsenic contents

- Inorganic arsenic were analysed in our current study
- Totally analysed 600 composite samples
- Detected in 51% of samples
- Food items with highest levels
 - Water spinach (74 µg/kg)
 - Salted eggs (58 µg/kg)
 - Oyster (58 µg/kg)
Dietary exposure to inorganic arsenic

<table>
<thead>
<tr>
<th></th>
<th>Current study</th>
<th>Study in 2002*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dietary exposure (µg/kg bw/day)</td>
<td>MOEs</td>
</tr>
<tr>
<td>Average</td>
<td>0.22</td>
<td>9 – 32</td>
</tr>
<tr>
<td>High consumer</td>
<td>0.38</td>
<td>5 – 18</td>
</tr>
</tbody>
</table>

- All dietary exposures were below the BMDL_{0.5}
- * Lower than the previous study of secondary school students in 2002
Comparison with other places

<table>
<thead>
<tr>
<th>Places</th>
<th>Dietary exposure (μg/kg bw/day)</th>
<th>Average</th>
<th>High consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK a</td>
<td>0.03 – 0.09</td>
<td>0.07 – 0.17 (97.5P)</td>
<td></td>
</tr>
<tr>
<td>France b</td>
<td>0.10</td>
<td>0.27 (95P)</td>
<td></td>
</tr>
<tr>
<td>USA a</td>
<td>0.08 – 0.20</td>
<td>0.16 – 0.34 (95P)</td>
<td></td>
</tr>
<tr>
<td>Hong Kong a (current study)</td>
<td>0.22</td>
<td>0.38 (95P)</td>
<td></td>
</tr>
<tr>
<td>New Zealand b</td>
<td>0.24 – 0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada b</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe (19 countries) b</td>
<td>0.21 – 0.61</td>
<td>0.36 – 0.99 (95P)</td>
<td></td>
</tr>
<tr>
<td>Japan a,b</td>
<td>0.36 – 0.46</td>
<td>0.83 – 1.29 (95P)</td>
<td></td>
</tr>
<tr>
<td>China a</td>
<td>0.24 – 0.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a Analysed inorganic As
- b Converted from total As
Major food contributors

- 53.5% Cereals and their products
- 13.0% Beverages, non-alcoholic
- 10.4% Vegetables and their products
- 7.9% Fish and seafood and their products
- 5.4% Mixed dishes
- 3.3% Fruits
- 3.2% Meat, poultry and game and their products
- 1.0% Condiments, sauces and herbs
- 0.6% Beverages, alcoholic
- 0.4% Dairy products
- 0.3% Eggs and their products
- 0.2% Legumes, nuts and seeds and their products
- 0.6% Others

Similar to other dietary exposure studies
Major food contributor (2)

- Rice is the major contributor
 - Mean levels:
 - White rice: 22 µg/kg
 - Unpolished rice: 43 µg/kg
 - Other cereals: noodles, bread and oatmeal
 - Lower levels of inorganic arsenic
 - Mean levels ranged from 1.5 to 9 µg/kg
- Significant source of exposures:
 - White rice (include congee)
 - 45.2% of total exposure
 - Consistent with data in other countries where rice is the staple food
Conclusion

- Dietary exposures to inorganic arsenic of the population:
 - Below the range of BMDL_{0.5}
 - MOEs
 - Average population: 9 – 32
 - High consumer: 5 – 18

- Having considered the carcinogenic risk, efforts should be made to reduce the exposure to inorganic arsenic of the population

- Rice is the major contributor
 - Arsenic contamination of rice is regarded as a worldwide problem
Advice to Trade

- Observe good agricultural practices to minimise inorganic arsenic contamination of foods
 - Such as avoid using arsenic contaminated water for irrigation
Advice to Public

- Study findings are not sufficient to warrant changes in the basic dietary advice on healthy eating
 - Have a balanced and varied diet
 - Take cereals (such as rice, noodles, oatmeal and bread) as the major source
Advice to Public (2)

Those individuals, who wish to reduce inorganic arsenic exposure:

- Consider choosing more other cereals, which generally contain lower levels of inorganic arsenic than rice, as part of their diet
- Observe the following advices: Wash rice thoroughly but without excessive washing as some nutrients may be lost, and discard the washed water before cooking so as to reduce the arsenic levels (about 10%), especially the inorganic form
Publicity

- **Study report on inorganic arsenic**
 - Upload in the webpage of CFS

- **Other TDS reports**
 - Will be released in phases and uploaded in the webpage of CFS
The End