The First Hong Kong Total Diet Study: Inorganic Arsenic

February 2012

Content

- The First Hong Kong Total Diet Study (the 1st HKTDS)
- Inorganic Arsenic
- Study Findings
- Recommendations

The 1st HKTDS

- Period: 2010 ~ 2014
- Objectives:
 - To estimate the dietary exposures of the HK population and population subgroups to a range of selected substances
 - including contaminants and nutrients
 - □ To assess any associated health risks

The 1st HKTDS (2)

- Food consumption data source
 - Population-Based Food Consumption Survey (FCS)
 - □ Select 150 TDS food items
 - based on food consumption pattern
- Analysis of over 130 substances
 - Pesticide residues, persistent organic pollutants (POPs), metallic contaminants, mycotoxins, macro nutrients, elements, etc.

The 1st HKTDS (3)

Methodology:

- Food sampling and preparation
 - Commission the Chinese University of Hong Kong to carry out
 - 4 occasions from March 2010 to February 2011
 - A total of 1800 samples were collected and combined into 600 composite samples

Laboratory Analysis

- Mainly conduct by the Food Research Laboratory (FRL) of the CFS
- Perform in batches with reference to the nature and stability of the selected substances

The 1st HKTDS (4)

- Reports will be issued in phases
- First report (released in December 2011)
 - Dioxins and dioxin-like PCBs
- Second report
 - □ Inorganic arsenic

Inorganic Arsenic

- Arsenic: a metalloid occurs in inorganic and organic forms
- Inorganic arsenic: more toxic form of arsenic
 - \square Arsenic trioxide (As₂O₃₎

Sources of inorganic arsenic

- Found in the environment
 - Natural sources
 - Arsenic is present in soil, ground water and plants
 - Human activities
 - Arsenic compounds are used in manufacture of transistors, lasers, semiconductors, glass, pigments, etc, and to a lesser extent, as pesticides, feed additives and pharmaceuticals.
- Major routes of exposure
 - Food such as rice, seafood
 - Drinking water

Health effect of inorganic arsenic

Acute toxicity to human

■ Gastrointestinal symptoms, disturbances of cardiovascular and nervous system functions and may eventually death

Chronic effect to human

 Skin lesions, cardiovascular disease, neurotoxicity and diabetes

Carcinogenicity

- Cancers of urinary bladder, lung and skin in human
- □ International Agency for Research on Cancer (IARC)
 - classified inorganic arsenic as Group 1 agent, i.e.
 carcinogenic to human

$BMDL_{0.5}$

- Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) (2010)
 - \Box Determined the inorganic arsenic BMDL _{0.5} in human:
 - $\blacksquare 3.0 \,\mu g/kg \,bw/day \,(ranged \, 2 7 \,\mu g/kg \,bw/day)$
 - Withdrew the provisional tolerable weekly intake (PTWI) of 15 μg/kg bw/week (i.e. 2.1 μg/kg bw/day)
 - as it was no longer appropriate
 - **BMDL**_{0.5} (Benchmark dose lower confidence limit for a 0.5% increased incidence of **lung cancer in human**)
 - Lower confidence limit of a point on the dose-response curve that characterises adverse effect, to account for uncertainty in the data.

Margin of exposure

Margin of exposure (MOE)

$$\begin{aligned} \mathbf{BMDL}_{0.5} \\ \mathbf{MOE} &= \mathbf{------} \\ \mathbf{Dietary\ Exposure} \end{aligned}$$

- Provide an indication of the level of concern without actually quantifying the risk
- Use for priority setting for risk management actions
- Higher the MOE → Lower the concern

Laboratory analysis on inorganic arsenic

Exposure studies in other places:

- Usually analysis as total arsenic
- Assign inorganic arsenic levels derived from conversion factors applied
- \rightarrow introduce biases in the estimates

JECFA (2010)

- recommend using actual data of inorganic arsenic
- rather than calculate from total arsenic by using generalised conversion factors

Study Findings

Inorganic arsenic contents

- Inorganic arsenic were analysed in our current study
- Totally analysed 600 composite samples
- Detected in 51% of samples
- Food items with highest levels
 - Water spinach (74 μg/kg)
 - Salted eggs (58 μg/kg)
 - Oyster (58 μg/kg)

Dietary exposure to inorganic arsenic

	Current study		Study in 2002*
	Dietary exposure (µg/kg bw/day)	MOEs	Dietary exposure (µg/kg bw/day)
Average	0.22	9 – 32	0.36
High consumer	0.38	5 – 18	0.97

- All dietary exposures were below the $BMDL_{0.5}$
- * Lower than the previous study of secondary school students in 2002

Comparison with other places

Average	High consumer
0.02 0.00	
0.03 - 0.09	0.07 – 0.17 (97.5P)
0.10	0.27 (95P)
0.08 - 0.20	0.16 – 0.34 (95P)
0.22	0.38 (95P)
0.24 - 0.29	
0.29	
0.21 - 0.61	0.36 – 0.99 (95P)
0.36 - 0.46	0.83 – 1.29 (95P)
0.24 - 0.76	
	0.08 - 0.20 0.22 $0.24 - 0.29$ 0.29 $0.21 - 0.61$ $0.36 - 0.46$

a Analysed inorganic As

Food and Environmental

b Converted from total As

tre for Food Safety

Major food contributors

- ☐ Cereals and their products
- Beverages, non-alcoholic
- □ Vegetables and their products
- ☐ Fish and seafood and their products
- Mixed dishes
- **■** Fruits
- Meat, poultry and game and their products
- ☐ Condiments, sauces and herbs
- Beverages, alcoholic
- Dairy products
- ☐ Eggs and their products
- Legumes, nuts and seeds and their products
- Others

Major food contributor (2)

- Rice is the major contributor
 - Mean levels:
 - White rice: 22 μg/kg
 - Unpolished rice: 43 μg/kg
 - Other cereals: noodles, bread and oatmeal
 - Lower levels of inorganic arsenic
 - Mean levels ranged from 1.5 to 9 μg/kg
- Significant source of exposures:
 - White rice (include congee)
 - □ 45.2% of total exposure
- Consistent with data in other countries where rice is

Conclusion

- Dietary exposures to inorganic arsenic of the population:
 - \Box Below the range of BMDL_{0.5}
 - MOEs
 - Average population: 9 32
 - High consumer: 5 18
- Having considered the carcinogenic risk, efforts should be made to reduce the exposure to inorganic arsenic of the population
- Rice is the major contributor
 - Arsenic contamination of rice is regarded as a worldwide problem

Advice to Trade

- Observe good agricultural practices to minimise inorganic arsenic contamination of foods
 - Such as avoid using arsenic contaminated water for irrigation

Advice to Public

- Study findings are not sufficient to warrant changes in the basic dietary advice on healthy eating
 - Have a balanced and varied diet
 - □ Take cereals (such as rice, noodles, oatmeal and bread) as the major source

Advice to Public (2)

- Those individuals, who wish to reduce inorganic arsenic exposure:
 - Consider choosing more other cereals, which generally contain lower levels of inorganic arsenic than rice, as part of their diet
 - Observe the following advices: Wash rice thoroughly but without excessive washing as some nutrients may be lost, and discard the washed water before cooking so as to reduce the arsenic levels (about 10%), especially the inorganic form

Publicity

- Study report on inorganic arsenic
 - Upload in the webpage of CFS
- Other TDS reports
 - Will be released in phases and uploaded in the webpage of CFS

The End

