Nutrient Test Methods (Part 1)

Seminar on Food Nutrition Labelling Test Method

Outline

- Definition of the parameter
- Some examples of relevant standards or official methods
- Flow Chart for analysis
- Point to notes for some critical steps

References

- Method Guidance Notes on Nutrition Labelling and Nutrition Claims, CFS
- Official Methods of Analysis of AOAC International, 18th edition, 2005, Current Through Revision 2, 2007
- GB Standards, ISO Standards and BS Standards
- Food analysis: general techniques, additives, contaminants and composition, Manuals of Food Quality Control, FAO Food and Nutrition Paper 14/7, 1986

Core Nutrients (1 + 7)

- * Energy
- Total fat
- Protein
- Carbohydrates (Available)
- Sugars
- Sodium
- Saturated fatty acids
- Trans fatty acids

Other Nutrients

- Dietary Fibre
- * Cholesterol
- Unsaturated fatty acids
- * Minerals
- Witamins
- * etc.

Analysis of Energy

Energy

By calculation

```
kcal [kJ] per 100g of food =
```

4 [17] x available carbohydrates + 4 [17] x protein + 9 [37] x total fat + 7 [29] x ethanol + 3 [13] x organic acids

Note: all parameters are in %(w/w)

Reference: Codex Guidelines on Nutrition Labelling

Energy - Points to note

- Needs for testing of ethanol or organic acids depends on the ingredients and their levels in the food samples
 e.g vinegar has to test for organic
 - e.g vinegar has to test for organic acids
- Combustion method (Calorimeter) is not acceptable

Energy – Available proficiency test

* AOAC

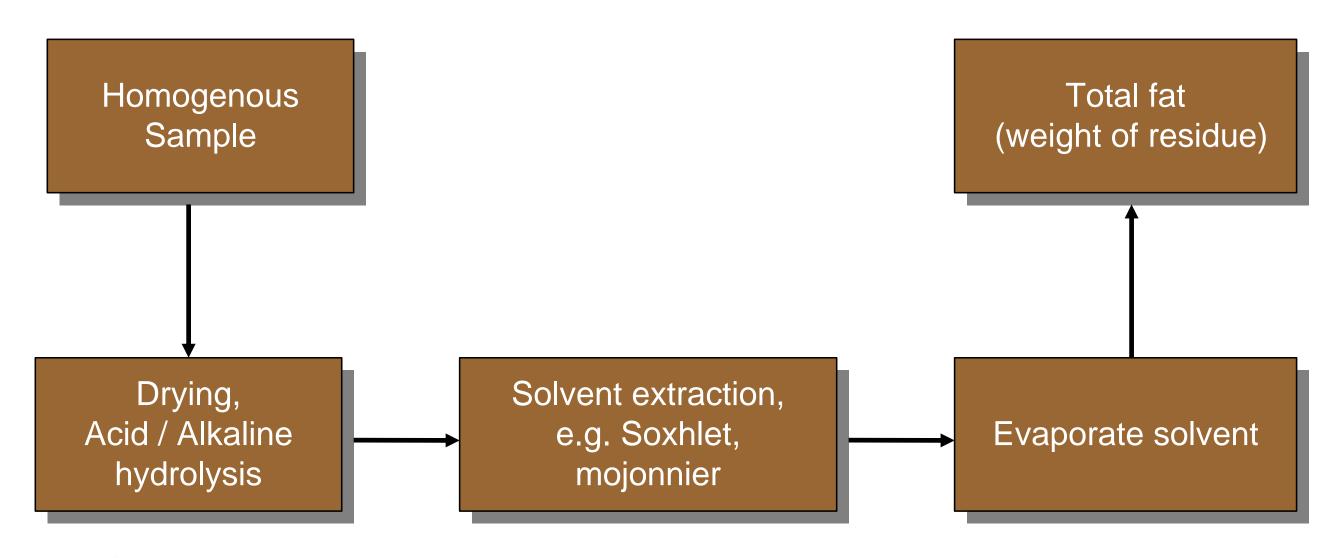
Analysis of Total Fat

Total Fat (1)

* Refers to the sum of triglycerides, phospholipids, wax ester, sterols and minor amount of non-fatty materials

- Gravimetric methods
- Sum of individual triglyceride X

Total Fat (2)


Examples of AOAC official methods
 AOAC 991.36 for meat products
 AOAC 948.22 for nut products
 AOAC 948.15 for seafood
 AOAC 922.06 for flour
 AOAC 989.05 for milk

Total Fat (3)

* Analysis

Total Fat (4)

Sample preparation representative and homogenous sample

sample size

=> Definition of "0" ≤ 0.5 g/100g

e.g. if sample contains 0.5% fat, 1 g sample contains $(1 \times 0.5\%) = 0.005$ g of fat

Total Fat (5)

Apparatus for blending samples

Total Fat (6)

Freeze-dryer

Food and Environmental Hygiene Department

Total Fat (7)

Extraction method depends on food matrix

e.g. Milk products – alkaline hydrolysis

Flour – acid hydrolysis

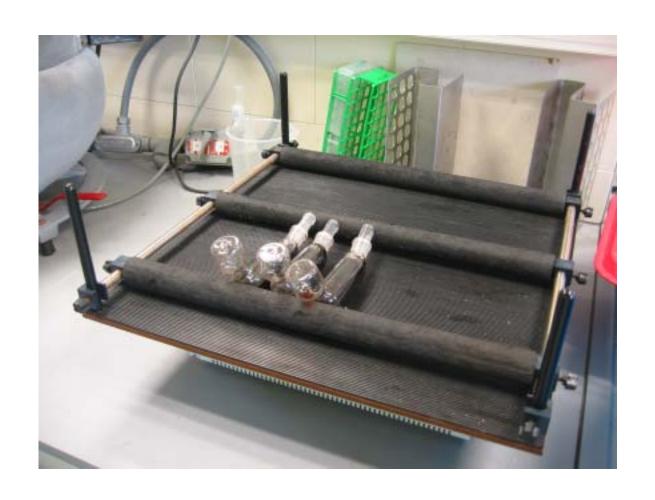
Seafood – acid hydrolysis,

solvent extraction

Meat – Soxhlet extraction

Total Fat (8)

Acid-hydrolysis



Total Fat (9)

Extraction

Total Fat (10)

Determine the weight of residue

Drying to constant weight

Prolong heating may increase weight of fat, due to oxidation

Total Fat - Points to note

Appropriate method is important

Acid hydrolysis can produce higher results for cereal products

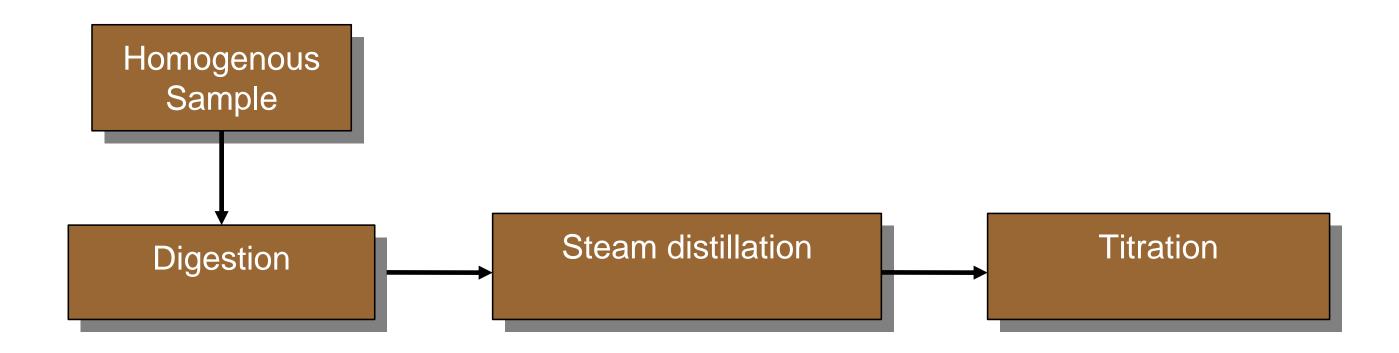
Total Fat – Available proficiency test

- * FAPAS
- * AOAC
- * LGC
- * AOCS

Analysis of Protein

Protein (1)

Protein = Total Kjeldahl Nitrogen x CFCF = 6.25 for mixed food


Examples of AOAC official methods AOAC 928.08 for meat AOAC 991.20 for milk

Protein (2)

Analysis (TKN)

Protein (3)

- Sample preparation representative and homogenous sample sample size
 - => Definition of "0" ≤ 0.5 g/100g
 - e.g. if sample contains 0.5% protein and the conversion factor = 6.25, 1 g sample contains $(1 \times 0.5\%)/6.25 = 0.0008$ g of N (\sim 0.06 mMole) (0.6 ml x 0.1M HCl)

Protein (4)

Digestion

Reagents: conc. H₂SO₄, Na₂SO₄ or K₂SO₄ and catalyst (e.g. CuSO₄.5H₂O, TiO₂)

 $H_2SO_4: Na_2SO_4$ 2:1 (initial) \rightarrow 1:1 (final)

Temperature: ~420 °C

Time: ~2 hr

Appearance of final solution: clear solution

Protein (5)

Digestion

Protein (6)

- Distillation
 Add NaOH → strongly alkaline
 Distill NH₃ into 1) standardized HCl or 2) boric acid
- ***** Titration
 - 1) with NaOH
 - 2) with HCI

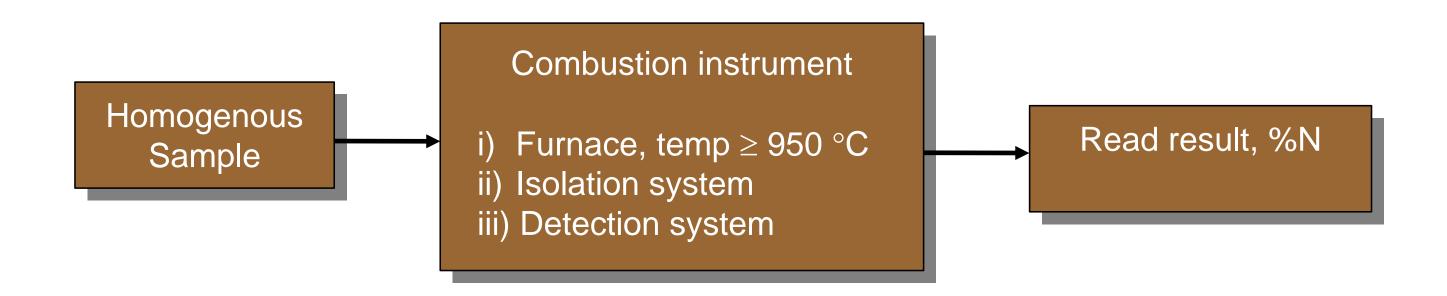
Protein (7)

Distillation & titration

Food and Environmental Hygiene Department

Protein (8)

* Analysis by Combustion results similar to TKN


Examples
 AOAC 992.15 for meat and meat product
 AOAC 992.23 for cereal grains

Protein (9)

* Analysis (Combustion)

Protein (10)

Sample preparation
 representative and homogenous sample
 sample size → ≥ 200 mg

InstrumentWorking rangee.g. 0.5% to 60% protein => 0.08% to 10% N

Protein (11) ** Combustion Instrument

Protein (12)

Analysis by sum of amino acids after hydrolysis of proteins

may involve huge amount of validation work

Protein - Points to note

- Conversion factor can vary from 5.18 (almonds) to 6.38 (milk and dairy products)
- Appropriate conversion factor is required
- Check whether a Codex standard is available for the food sample

Protein – Available proficiency test

- * FAPAS
- * AOAC
- * LGC

Analysis of Ethanol

Ethanol

Gas Chromatographic method

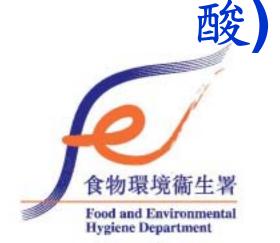
ExamplesAOAC 986.12 for canned salmonAOAC 984.14 for beer

Analysis of Organic Acids

Organic acid (1)

Liquid Chromatographic method

Examples
 AOAC 986.13 for cranberry juice cocktail and apple juice
 GB 5009.157 for foods



Organic acid (2)

Scope of AOAC 986.13
 quinic acid, malic acid, citric acid

Scope of GB 5009.157

tartaric acid (酒石酸), butanedioic acid (丁二酸), malic acid (苹果酸), citric acid (柠檬

Analysis of Carbohydrates

Carbohydrates (1)

Total Carbohydrates =Available carbohydrates + dietary fibre

Carbohydrates (2)

* Available Carbohydrates

Calculated by Difference:

100 – (protein + fat + water + ash + ethanol + dietary fibre)%(w/w)

Direct analysis

Carbohydrates - Points to note

- Includes sugar alcohols
 - => use same conversion factor as carbohydrates for energy calculation

Carbohydrates – Available proficiency test

* AOAC

Analysis of Water (moisture)

Water (1)

One of major constituents in food as solvent or dispersion medium; as in capillaries held by molecular forces; as water of hydration held by hydrogen bonding with protein and polysaccharide molecules

Water (2)

* Analysis - Air oven method

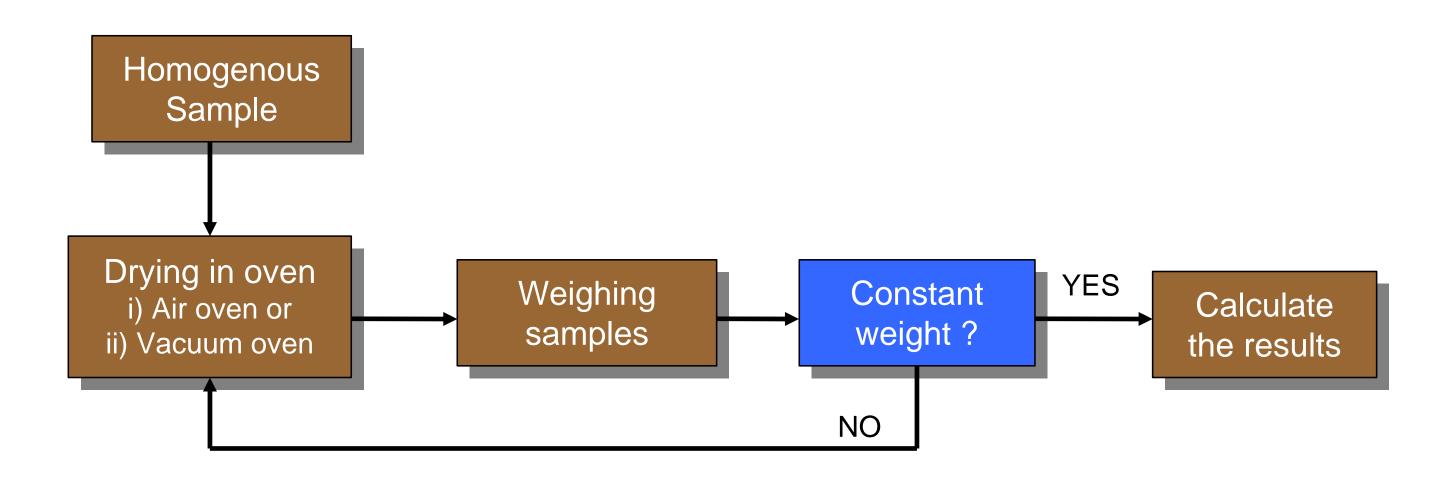
Examples
 AOAC 935.29 for malt
 AOAC 950.46 for meat
 ISO 1442:1997 / BS 4401-3:1997 for

meat and meat products

Water (3)

- * Analysis Vacuum Oven Method
 For high fat and/or high sugar contents
- **Examples**

AOAC 925.45 for sugars and sugar products


AOAC 926.12 for oils and fats

Water (4)

Analysis for air or vacuum oven method

Water (5)

Sample preparation
 representative and homogenous sample
 sample size

=> accuracy to 0.1 g/100g

e.g. if sample contains 0.1% water, 1 g sample contains $(1 \times 0.1\%) = 0.001$ g

(1 mg) of water

Water (6)

Sample preparation

Water (7)

Oven conditions

Air Oven method:

temp: depends on the method, usually

about 100 °C

pressure: atmospheric pressure

Water (8)

* Oven conditions
Vacuum Oven method:
temp: depends on the method, usually lower than 100 °C, e.g 60 or 70 °C
pressure: depends on the method, usually < 100 mm Hg</p>

Water (9)

Drying timeDepends on the temperature used

~ 4 – 18 hours

too long heating time ==> the weight increase due to oxidation

Water (10)

Achieving constant weight
 Cool the sample to room temperature in desiccator for about an hour

Successive weightings differ only a small amount, e.g. 0.5 mg, 1 mg, 2 mg or 5 mg

Water (11)

Desiccator

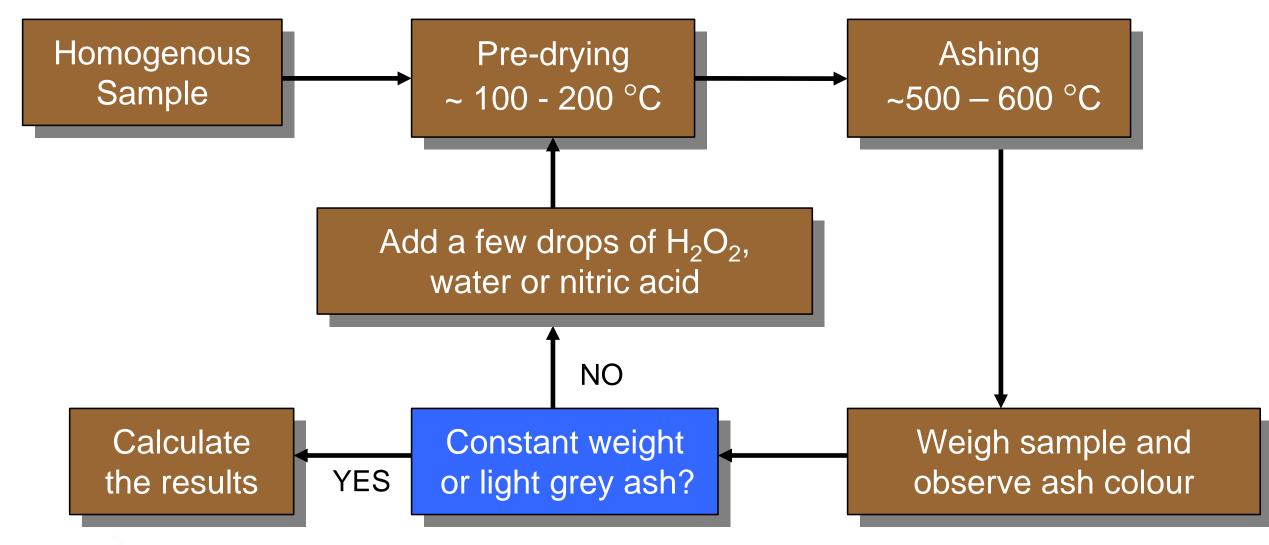
Water (12)

- Analysis Co-Distillation Method
 For containing significant amount of volatile substance other than water
- ExamplesAOAC 969.19 for chessesAOAC 986.21 for spices

Water – Available proficiency test

- * FAPAS
- * AOAC
- * LGC

Analysis of Ash


Ash (1)

Inorganic residue after the organic carbonaceous portion and other volatiles have been oxidized and evaporated away

ExamplesAOAC 945.46 for milkAOAC 923.03 for baked products

Ash (2)

* Analysis

Ash (3)

Sample preparation
 representative and homogenous sample
 sample size

=> accuracy to 0.1 g/100g

e.g. if sample contains 0.1% ash, 1 g sample contains $(1 \times 0.1\%) = 0.001$ g (1 mg) of ash

Ash (4)

Pre-drying and ashing
 May combine into one step if the temperature of furnace can be programmed

Avoid splitting and ignition

For high fat food, smoke off without ignition by burner before ashing in furnace

Ash (5)

* Results

White or light grey ash => no carbon remains

Blank may be required for correction

Ash (6)

Weighing and ashing

Ash (7)

* Thermogravimetric analyzer

Obtain moisture and ash results automatically

Ash (8)

Thermogravimetric analyzer

Ash – Available proficiency test

- * FAPAS
- * AOAC
- * LGC

Analysis of Dietary Fibre

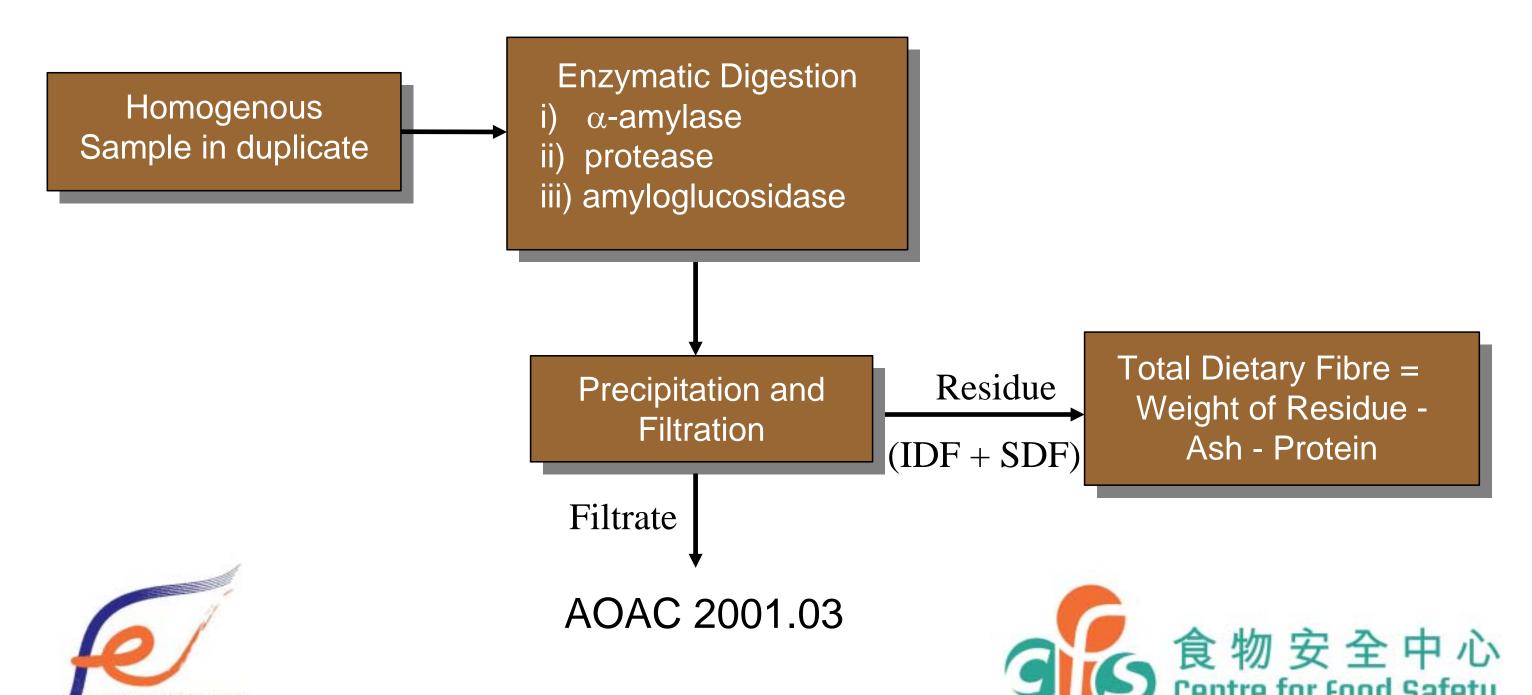
Dietary Fibre (1)

* HK Regulation - Any fibre analyzed by means of any official methods adopted by AOAC International

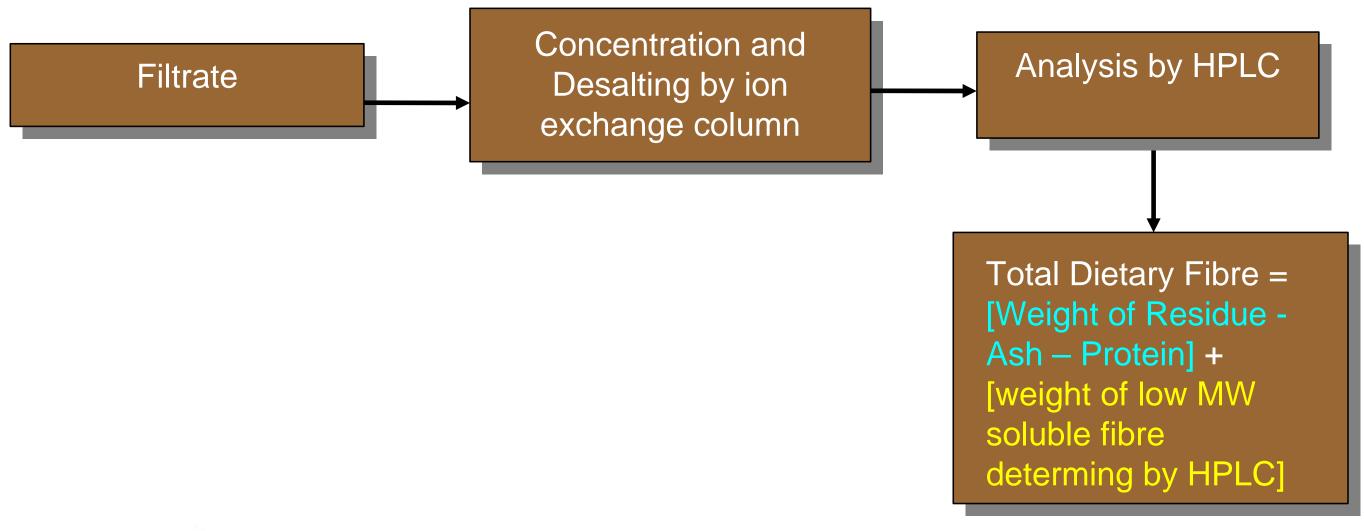
Dietary Fibre (2)

Examples of AOAC official methods AOAC 985.29 Total Dietary Fiber in Foods (insoluble fibre + soluble fibre)

AOAC 2001.03 (insoluble fibre + high MW soluble fibre + low MW soluble fibre)



Dietary Fibre (3)


***** Analysis (AOAC 985.29)

Food and Environmental Hygiene Department

Dietary Fibre (4)

* Analysis (AOAC 2001.03)

Dietary Fibre (5)

Empirical Methods

Results are valid only if the procedure is strictly followed.

Dietary Fibre (6)

Enzyme purity

Test sample	Activity tested	Sample weight, g	Expected recovery, %
Citrus pectin	Pectinase	0.1	95-100
Stractan (larch gum)	Hemicellulase	0.1	95-100
Wheat Starch	Amylase	1.0	0-1
Corn Starch	Amylase	1.0	0-2
Casein	Protease	0.3	0-2
β-Glucan (barley gum)	β-Glucanase	0.1	95-100

Dietary Fibre (7)

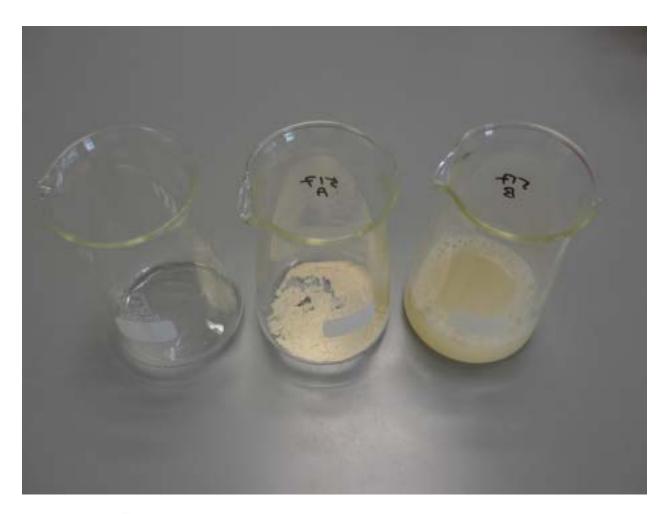
Sample preparation homogenous and dried sample, freeze-dry is recommended

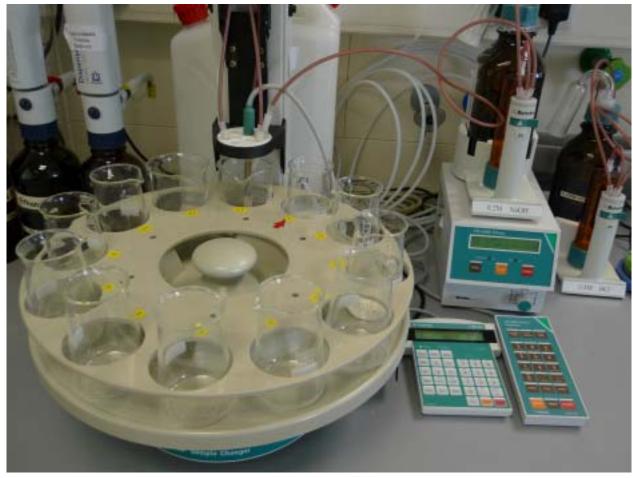
defat with petroleum ether if >10% fat content, otherwise false high results

weigh duplicate test portions, differ < 20 mg

Dietary Fibre (8)

- Enzymatic digestion
 - i) α -amylase, pH 6.2, 95 100 °C for 15 30 min
 - ii) protease, pH 7.5, 60 °C for 30 min
 - iii) amyloglucosidase, pH 4.3, 60 °C for 30 min


Final solution volume ~ 70 ml



Dietary Fibre (9)

Preparing for digestion

Dietary Fibre (10)

Enzymatic digestion

Food and Environmental Hygiene Department

Dietary Fibre (11)

Precipitation (for soluble fibre)
 Four volumes of 95% ethyl alcohol
 => 280 ml at 60 °C

let precipitate at room temperature

60 min for AOAC 985.29 overnight for AOAC 2001.03

Dietary Fibre (12)

Precipitation

Dietary Fibre (13)

* Filtration (by suction) collect the residues (soluble fibre + insoluble fibre) in pre-weight crucibles

ensure quantitative transfer of residues

may take 0.1 to 6 hrs per sample

Dietary Fibre (14)

Filtration

Dietary Fibre (15)

Residues collected

Dietary Fibre (16)

- * Results (AOAC 985.29)
 - 1 test portion → analyze for protein (CF=6.25)
 - 1 test portion → analyze for ash (5 h at 525 °C)

TDF = weight of dried residue – ash – protein (IDF + HMWRMD)

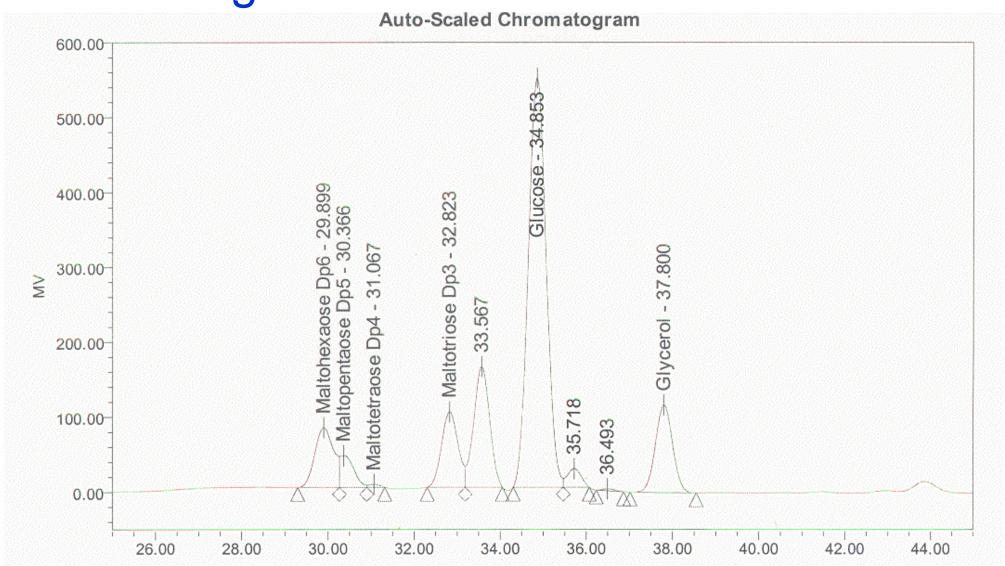
Blank value correction

Dietary Fibre (17)

Determination of low low MW resistant maltodextrin (LMWRMD):

concentrate the filtrate

remove salt from buffer by ion-exchange column


analyze by HPLC with RI detector => LMWRMD

Dietary Fibre (18)

LC chromatogram

Dietary Fibre (19)

* Results (AOAC 2001.03)

%TDF = %(IDF + HMWRMD) + %LMWRMD

Dietary Fibre (20)

* AOAC official methods for functional fibre

Functional fibre	Commercial name	Test Method
Beta-glucan	Imprime PGG®	AOAC 995.16
Oligofructose	Raftilose®, OliggoFiber™	AOAC 997.08 or 999.03
Fructooligosaccharides	Neosugar, Actilght®	AOAC 997.08 or 999.03
Polydextrose	Litesse®	AOAC 2000.11
Galactooligosaccharides	Yacult, Borculo Whey Products	AOAC 2001.02
Glucooligosaccharides	BioEurope	AOAC 999.03 or 997.08
Resistant maltodextrin	Fibersol-2	AOAC 2001.03
Resistant starch	C*Actistar	AOAC 2002.02

食物安全中心 Centre for Food Safety

Dietary Fibre (21)

- Methods are applicable for specific functional fibre
- * AOAC 2001.03 can provide good recoveries for different functional fibre, except glucooligosaccharides and resistant starch

Dietary fibre - Points to note

- Results are method dependent
- Functional fibre would increase the TDF results but may not be 100%
- * AOAC 2001.03 may give higher TDF results but with higher testing cost
- ***** Definition of "0": ≤ 1 g/100g

Dietary fibre – Available proficiency test

- * FAPAS
- * AOAC
- * LGC

Summary

- * Energy, Total fat, Protein, Carbohydrates
- * Tests involved:
 - √ Total fat
 - ✓ Protein
 - ✓ Water
 - ✓ Ash
 - ✓ Dietary Fibre
 - ✓ Organic acids (optional)
 - ✓ Ethanol (optional)

Thank You

