The First Hong Kong Total Diet Study Report No. 3: Polybrominated Diphenyl Ethers (PBDEs)

Total Diet Study (TDS)

- A tool for estimating dietary exposure, one of the steps in risk assessment
 - Involves food sampling and preparation, laboratory analysis, dietary exposure estimation
- Internationally recognised
 - Most cost effective way to estimate the dietary exposure of various population to a range of chemicals or nutrients
- Provide scientific basis for assessing food safety risks and regulating food supply

TDS Differs from Food Surveillance Programme

- Focus on substances in the whole diet, not on individual foods
- Prepare foods as table-ready form
- Take into consideration the impact of cooking
- Assess dietary exposure to substances actually ingested by the population, rather than concentrations of substances in food

Objectives

- To estimate dietary exposures of the Hong Kong population and various population subgroups to a range of substances, including contaminants and nutrients
- To assess any associated health risks

Study Reports

- 1st: Dioxins and dioxin-like PCBs
- 2nd: Inorganic Arsenic
- 3rd : Polybrominated Diphenyl Ethers (PBDEs)

Reasons to Study PBDEs

- Widespread and persistent in the environment and potentially toxic to humans
- Were found increasing in human bodies
- Received increasing attention by international health authorities because of their potential to impact upon human health and the environment
- Research from Baptist University found fish sold from HK market contained high levels of PBDEs and the exposure to PBDEs by the local population caused concern

PBDEs

- A group of industrial chemicals—flame retardants
 - Plastics, polyurethane foam, and textiles
- 3 main commercial products
 - PentaBDE, OctaBDE and DecaBDE
- PentaBDE and OctaBDE
 - POPs (persistent organic pollutants) under the Stockholm Convention in 2009

Properties

- Lipophilic
- Persistence in the environment
- Accumulate in living organisms through the food chain

Sources

 At low levels in air, water, soil, sediments, indoor dust and food

Indoor air, indoor dust and food, including human milk are the main sources of human exposure

Sources in Food

- Fatty foods of animal origin
 - Some fish, meats and dairy products

- Food processing related sources
 - Food contact with PBDE containing packaging materials may result in elevated contamination of food (EFSA 2011)

Toxicity

 In general, the lower the bromination of the PBDE, the higher the toxicity (e.g. PentaBDE is more toxic than DecaBDE)

Animal studies

- Low Acute toxicity
- Chronic toxicity
 - Cause liver enlargement
 - Affect the development, particularly on the brain and the reproductive organs
 - Affect neurobehavioural development
 - Disrupt thyroid hormone levels

Toxicity (2)

- Genotoxicity
 - Majority studies: not genotoxic
- Carcinogenicity
 - IARC classification
 - DecaBDE: Group 3 agent, i.e. not classifiable as to its carcinogenicity to human
 - PentaBDE & OctaBDE: no evaluation

Toxicity (3)

Human data

- Epidemiological studies indicated
 - An association between exposure to PBDEs and altered thyroid hormone regulation
- EFSA 2011
 - Observed effects not always consistent
 - Other coexisting contaminants could have confounded the outcome

Margin of Exposure (MOE)

- The Joint Food and Agriculture Organization (FAO)/World Health Organization (WHO) Expert Committee on Food Additives (JECFA)
 - Available data on PBDEs were not adequate for allocating a safety reference value
 - For the more toxic [less brominated] PBDE congeners, adverse effects would be unlikely to occur in rodents at dose <100 μg/kg bw/day
 - International estimate of dietary intake:~4 ng/kg bw /day
 - Margin of Exposure (MOE) =25 000 (large MOE)
 - The larger the MOE, the lower the health concern

Methods

Samples

- 426 samples (collected on 2 occasions, each occasion 71 food items, each item 3 samples)
- □ 3 samples from the same food item collected in each occasion were combined into one sample, →a total of 142 composite sample were analysed
- Tested substances
 - 24 PBDE congeners
- Dietary exposure estimation
 - Performed by an in-house developed web-based computer system, EASY
 - Mean average dietary exposure
 - 95th percentile exposure for high consumers

Results

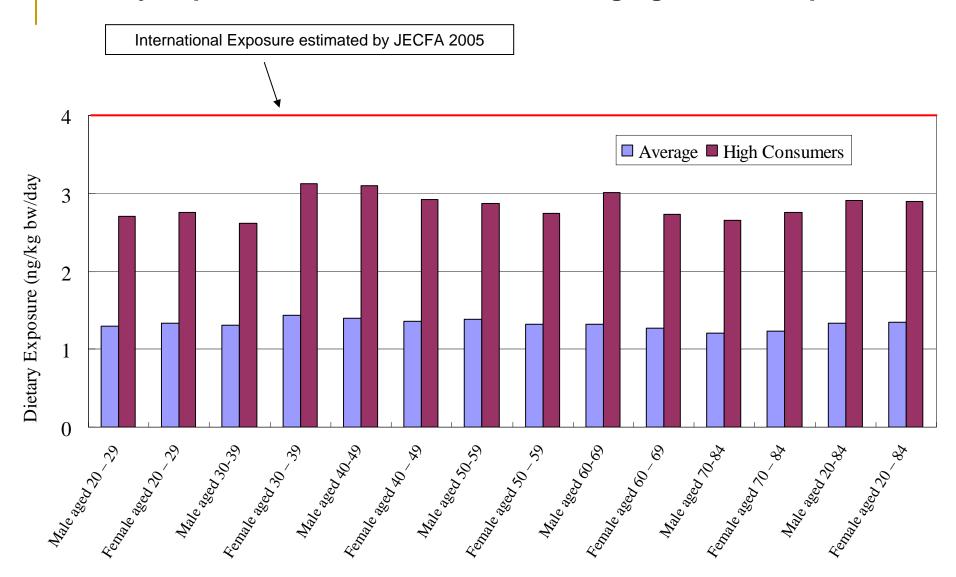
PBDE Contents

Food Group	No.	Mean (pg/g) [range]	
Eggs and their products	6	1693.7	[124.7-8401.9]
Fats and oils	4	1031.6	[58.4-2060.1]
Confectioneries	2	525.7	[444.8-606.7]
Fish and seafood and their products	38	350.4	[15.4-2421.5]
Meat, poultry and game and their products	24	191.9	[37.6-791.0]
Cereals and their products	24	172.5	[11.8-776.9]
Mixed dishes	22	92.2	[5.6-340.1]
Vegetables and their products	2	74.2	[51.4-97.0]
Snack foods	2	62.2	[52.7-71.7]
Dairy products	10	43.0	[6.3-180.1]
Condiments, sauces and herbs	2	18.7	[14.2-23.3]
Beverages, non-alcoholic	6	11.6	[6.5-21.2]

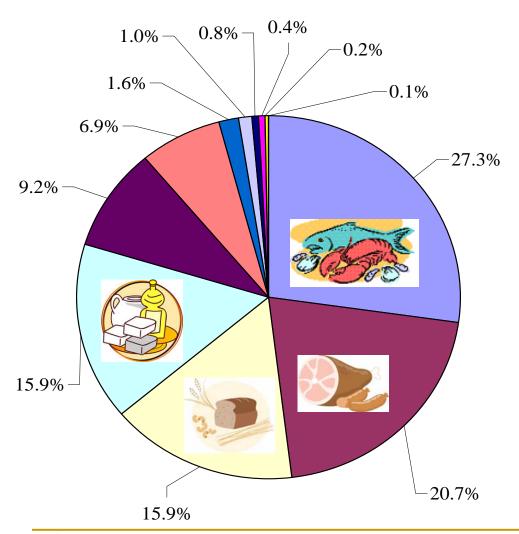
PBDE Contents (2)

Food items	Mean (pg/g) [range]	Compare to international data
Salted egg	4562.2 [722.5- <mark>8401.9</mark>]	NA
Vegetable oil	1962.7 [1865.3-2060.1]	Comparable
Yellow croaker	1632.8 [844.1-2421.5]	Comparable

Dietary Exposure


Average consumers: 1.34 ng/kg bw/day

High Consumers: 2.90 ng/kg bw/day


Dietary Exposures to PBDEs of Different Age-gender Groups

Food Groups Contributing to Total Dietary Exposure to PBDEs

- ☐ Fish and seafood and their products
- Meat, poultry and game and their products
- ☐ Cereal and their products
- ☐ Fats and oils
- Mixed dishes
- Eggs and their products
- Beverages, non-alcoholic
- ☐ Condiments, sauces and herbs
- Dairy products
- Confectioneries
- □ Vegetables and their products
- Snack foods

Comparison with Other Places

PBDE exposure from dietary sources
(ng/kg bw/day)

Belgium 2007 Upper bound 0.80 Lower bound 0.38

Japan 2008 Lower bound 1.1

USA 2006 0.9-1.2

Spain 2003 1.2-1.4

Spain 2008 1.1

HK 2012 1.34-2.90

UK 2006 Upper bound 5.91

Australia 2007 Upper bound 49-132 Middle bound 25-67 Lower bound 1-4

Be Cautious When Making Comparison

- No. of congeners tested
 - The more the congeners tested, the higher the PBDEs levels and dietary exposure calculated
- Limit of detection (LOD)
- Treatments of LOD values (upper bound vs lower bound)
- Types of food tested
- Consumption patterns

Limitations

- Small number of samples was analysed
 - 2 out of 4 occasions
- Only food likely to contain PBDEs were selected for testing
 - 71 out of 150 food items
 - □ → May lead to under-estimation

Conclusion

- Dietary exposure to PBDEs
 - Average consumer: 1.34 ng/kg bw/day
 - High consumer: 2.90 ng/kg bw/day
- Large MOE values → health concern is low. Dietary exposure of the population was unlikely to be a significant health concern

Advice to Trade

- Try to reduce the amount of fat in food products (e.g. select lean cuts of meat and poultry, use low-fat dairy products, use lowfat cooking methods, etc)
- Obtain food supplies from reliable sources
- Maintain proper records to enable source tracing when required

Advice to Public

- Maintain a balanced diet so as to avoid excessive exposure to chemical contaminants from a small range of food items
- Consume low-fat products, trim fat from meat and meat products
- To prepare food with less amount of fats and oils

The End

